Interface Arbitrary<T>
- Type Parameters:
T
- The type of generated objects. Primitive objects (e.g. int, boolean etc.) are represented by their boxed type (e.g. Integer, Boolean).
- All Known Subinterfaces:
ActionChainArbitrary<S>
,ActionSequenceArbitrary<M>
,ArrayArbitrary<T,
,A> BigDecimalArbitrary
,BigIntegerArbitrary
,ByteArbitrary
,CalendarArbitrary
,ChainArbitrary<T>
,CharacterArbitrary
,DateArbitrary
,DoubleArbitrary
,DurationArbitrary
,EmailArbitrary
,FloatArbitrary
,FunctionArbitrary<F,
,R> InstantArbitrary
,IntegerArbitrary
,IteratorArbitrary<T>
,ListArbitrary<T>
,LocalDateArbitrary
,LocalDateTimeArbitrary
,LocalTimeArbitrary
,LongArbitrary
,MapArbitrary<K,
,V> MonthDayArbitrary
,NumericalArbitrary<T,
,A> OffsetDateTimeArbitrary
,OffsetTimeArbitrary
,PeriodArbitrary
,SetArbitrary<T>
,ShortArbitrary
,SizableArbitrary<U>
,StreamableArbitrary<T,
,U> StreamArbitrary<T>
,StringArbitrary
,TraverseArbitrary<T>
,TypeArbitrary<T>
,YearArbitrary
,YearMonthArbitrary
,ZonedDateTimeArbitrary
,ZoneOffsetArbitrary
- All Known Implementing Classes:
ArbitraryDecorator
-
Nested Class Summary
-
Method Summary
Modifier and TypeMethodDescriptionCreate optional stream of all possible values this arbitrary could generate.default <A> ArrayArbitrary<T,
A> Create a new arbitrary of typeT[]
using the existing arbitrary for generating the elements of the array.Create a new arbitrary of typeList<T>
by adding elements of type T until conditionuntil
is fulfilled.Create a new arbitrary of typeT
that will use the underlying arbitrary to create the tuple values but will return unshrinkable values.Return an arbitrary's edge cases up to a limit of 1000.edgeCases
(int maxEdgeCases) edgeCases
(Consumer<EdgeCases.Config<T>> configurator) Experimental interface to change generated edge cases of a specific arbitrary.default Optional<ExhaustiveGenerator<T>>
Create the exhaustive generator for an arbitrary using the maximum allowed number of generated samples.default Optional<ExhaustiveGenerator<T>>
exhaustive
(long maxNumberOfSamples) Create the exhaustive generator for an arbitrary.Create a new arbitrary of the same typeT
that creates and shrinks the original arbitrary but only allows values that are accepted by thefilterPredicate
.Create a new arbitrary of the same typeT
that creates and shrinks the original arbitrary but only allows values that are accepted by thefilterPredicate
.fixGenSize
(int genSize) Fix the genSize of an arbitrary so that it can no longer be influenced from outsidedefault <U> Arbitrary<U>
Create a new arbitrary of typeU
that uses the values of the existing arbitrary to create a new arbitrary using themapper
function.default void
forEachValue
(Consumer<? super T> action) Iterate through each value this arbitrary can generate if - and only if - exhaustive generation is possible.generator
(int genSize) Create the random generator for an arbitrary.default RandomGenerator<T>
generator
(int genSize, boolean withEdgeCases) Create the random generator for an arbitrary with or without edge cases.default RandomGenerator<T>
generatorWithEmbeddedEdgeCases
(int genSize) Create the random generator for an arbitrary where the embedded generators, if there are any, also generate edge cases.ignoreException
(Class<? extends Throwable> exceptionType) Create a new arbitrary of typeT
that will use the underlying arbitrary to create the tuple values but will ignore any raised exception of typeexceptionType
during generation.ignoreExceptions
(Class<? extends Throwable>... exceptionTypes) Create a new arbitrary of typeT
that will use the underlying arbitrary to create the tuple values but will ignore any raised exception inexceptionTypes
during generation.injectDuplicates
(double duplicateProbability) Create a new arbitrary of typeIterable<T>
that will inject duplicates of previously generated values with a probability ofduplicateProbability
.injectNull
(double nullProbability) Create a new arbitrary of the same type but inject null values with a probability ofnullProbability
.default boolean
default IteratorArbitrary<T>
iterator()
Create a new arbitrary of typeIterable<T>
using the existing arbitrary for generating the elements of the stream.default ListArbitrary<T>
list()
Create a new arbitrary of typeList<T>
using the existing arbitrary for generating the elements of the list.default <U> Arbitrary<U>
Create a new arbitrary of typeU
that maps the values of the original arbitrary using themapper
function.optional()
Create a new arbitrary of typeOptional<T>
using the existing arbitrary for generating the elements of the stream.optional
(double presenceProbability) Create a new arbitrary of typeOptional<T>
using the existing arbitrary for generating the elements of the stream.default T
sample()
Generate a single sample value using this arbitrary.Generate a stream of sample values using this arbitrary.default SetArbitrary<T>
set()
Create a new arbitrary of typeSet<T>
using the existing arbitrary for generating the elements of the set.default StreamArbitrary<T>
stream()
Create a new arbitrary of typeStream<T>
using the existing arbitrary for generating the elements of the stream.default Arbitrary<Tuple.Tuple1<T>>
tuple1()
Create a new arbitrary of typeTuple.Tuple1<T>
that will use the underlying arbitrary to create the tuple value;default Arbitrary<Tuple.Tuple2<T,
T>> tuple2()
Create a new arbitrary of typeTuple.Tuple2<T, T>
that will use the underlying arbitrary to create the tuple values;default Arbitrary<Tuple.Tuple3<T,
T, T>> tuple3()
Create a new arbitrary of typeTuple.Tuple3<T, T, T>
that will use the underlying arbitrary to create the tuple values;tuple4()
Create a new arbitrary of typeTuple.Tuple4<T, T, T, T>
that will use the underlying arbitrary to create the tuple values;tuple5()
Create a new arbitrary of typeTuple.Tuple5<T, T, T, T, T>
that will use the underlying arbitrary to create the tuple values;Create a new arbitrary of typeT
that will not explicitly generate any edge cases, neither directly or in embedded arbitraries.
-
Method Details
-
generator
Create the random generator for an arbitrary.Starting with version 1.4.0 the returned generator should no longer include edge cases explicitly since those will be injected in generator(int, boolean)
- Parameters:
genSize
- a very unspecific configuration parameter that can be used to influence the configuration and behaviour of a random generator if and only if the generator wants to be influenced. Many generators are independent of genSize.The default value of
genSize
is the number of tries configured for a property. Use fixGenSize(int) to fix the parameter for a given arbitrary.- Returns:
- a new random generator instance
-
generator
@API(status=INTERNAL, since="1.4.0") default RandomGenerator<T> generator(int genSize, boolean withEdgeCases) Create the random generator for an arbitrary with or without edge cases.Never override this method. Override generator(int) instead.
- Parameters:
genSize
- See generator(int) about meaning of this parameterwithEdgeCases
- True if edge cases should be injected into the stream of generated values- Returns:
- a new random generator instance
-
generatorWithEmbeddedEdgeCases
@API(status=INTERNAL, since="1.4.0") default RandomGenerator<T> generatorWithEmbeddedEdgeCases(int genSize) Create the random generator for an arbitrary where the embedded generators, if there are any, also generate edge cases.Override only if there are any embedded arbitraries / generators, e.g. a container using an element generator
- Parameters:
genSize
- See generator(int) about meaning of this parameter- Returns:
- a new random generator instance
-
asGeneric
- Returns:
- The same instance but with type Arbitrary<Object>
-
exhaustive
Create the exhaustive generator for an arbitrary using the maximum allowed number of generated samples. Just trying to find out if such a generator exists might take a long time. This method should never be overridden.- Returns:
- a new exhaustive generator or Optional.empty() if it cannot be created.
-
exhaustive
Create the exhaustive generator for an arbitrary. Depending onmaxNumberOfSamples
this can take a long time. This method must be overridden in all arbitraries that support exhaustive generation.- Parameters:
maxNumberOfSamples
- The maximum number of samples considered. If during generation it becomes clear that this number will be exceeded generation stops.- Returns:
- a new exhaustive generator or Optional.empty() if it cannot be created.
-
isGeneratorMemoizable
@API(status=INTERNAL) default boolean isGeneratorMemoizable() -
edgeCases
-
edgeCases
Return an arbitrary's edge cases up to a limit of 1000.Never override. Override edgeCases(int) instead.
- Returns:
- an instance of type EdgeCases
-
allValues
Create optional stream of all possible values this arbitrary could generate. This is only possible if the arbitrary is available for exhaustive generation.- Returns:
- optional stream of all possible values
-
forEachValue
Iterate through each value this arbitrary can generate if - and only if - exhaustive generation is possible. This method can be used for example to make assertions about a set of values described by an arbitrary.- Parameters:
action
- the consumer function to be invoked for each value- Throws:
AssertionError
- if exhaustive generation is not possible
-
filter
Create a new arbitrary of the same typeT
that creates and shrinks the original arbitrary but only allows values that are accepted by thefilterPredicate
.- Parameters:
filterPredicate
- The predicate used for filtering- Returns:
- a new arbitrary instance
- Throws:
TooManyFilterMissesException
- if filtering will fail to come up with a value after 10000 tries
-
filter
@API(status=EXPERIMENTAL, since="1.7.0") default Arbitrary<T> filter(int maxMisses, Predicate<T> filterPredicate) Create a new arbitrary of the same typeT
that creates and shrinks the original arbitrary but only allows values that are accepted by thefilterPredicate
.- Parameters:
maxMisses
- The max number of misses allowed for filteringfilterPredicate
- The predicate used for filtering- Returns:
- a new arbitrary instance
- Throws:
TooManyFilterMissesException
- if filtering will fail to come up with a value aftermaxMisses
tries
-
map
Create a new arbitrary of typeU
that maps the values of the original arbitrary using themapper
function.- Type Parameters:
U
- type of resulting object- Parameters:
mapper
- the function used to map- Returns:
- a new arbitrary instance
-
flatMap
Create a new arbitrary of typeU
that uses the values of the existing arbitrary to create a new arbitrary using themapper
function.- Type Parameters:
U
- type of resulting object- Parameters:
mapper
- the function used to map to arbitrary- Returns:
- a new arbitrary instance
-
injectNull
Create a new arbitrary of the same type but inject null values with a probability ofnullProbability
.- Parameters:
nullProbability
- the probability. ≥ 0 and ≤ 1.- Returns:
- a new arbitrary instance
-
fixGenSize
Fix the genSize of an arbitrary so that it can no longer be influenced from outside- Parameters:
genSize
- The size used in arbitrary instead of the dynamic one- Returns:
- a new arbitrary instance
-
list
Create a new arbitrary of typeList<T>
using the existing arbitrary for generating the elements of the list.- Returns:
- a new arbitrary instance
-
set
Create a new arbitrary of typeSet<T>
using the existing arbitrary for generating the elements of the set.- Returns:
- a new arbitrary instance
-
stream
Create a new arbitrary of typeStream<T>
using the existing arbitrary for generating the elements of the stream.- Returns:
- a new arbitrary instance
-
iterator
Create a new arbitrary of typeIterable<T>
using the existing arbitrary for generating the elements of the stream.- Returns:
- a new arbitrary instance
-
array
Create a new arbitrary of typeT[]
using the existing arbitrary for generating the elements of the array.- Type Parameters:
A
- Type of resulting array class- Parameters:
arrayClass
- The arrays class to create, e.g.String[].class
. This is required due to limitations in Java's reflection capabilities.- Returns:
- a new arbitrary instance
-
optional
Create a new arbitrary of typeOptional<T>
using the existing arbitrary for generating the elements of the stream.The new arbitrary generates
Optional.empty()
values with a probability of0.05
(i.e. 1 in 20).- Returns:
- a new arbitrary instance
-
optional
@API(status=MAINTAINED, since="1.5.4") default Arbitrary<Optional<T>> optional(double presenceProbability) Create a new arbitrary of typeOptional<T>
using the existing arbitrary for generating the elements of the stream.The new arbitrary generates
Optional.empty()
values with a probability of1 - presenceProbability
.- Parameters:
presenceProbability
- The probability with which a value is present, i.e. not empty- Returns:
- a new arbitrary instance
-
collect
Create a new arbitrary of typeList<T>
by adding elements of type T until conditionuntil
is fulfilled.- Parameters:
until
- predicate to check if final condition has been reached- Returns:
- a new arbitrary instance
-
sampleStream
Generate a stream of sample values using this arbitrary. This can be useful for- Testing arbitraries
- Playing around with arbitraries in jshell
- Using arbitraries independently from jqwik, e.g. to feed test data builders
The underlying generator is created with size 1000. Outside a property a new instance of Random will be created to feed the generator.
Using this method within a property does not break reproducibility of results, i.e. rerunning it with same seed will also generate the same values.
- Returns:
- a stream of newly generated values
-
sample
Generate a single sample value using this arbitrary. This can be useful for- Testing arbitraries
- Playing around with arbitraries in jshell
- Using arbitraries independently from jqwik, e.g. to feed test data builders
Some additional things to be aware of:
- If you feel the need to use this method for real generation, e.g. in a provider method you are most probably doing it wrong. You might want to use flatMap(Function).
- The underlying generator is created with size 1000. Outside a property a new instance of Random will be created to feed the generator.
- Using this method within a property does not break reproducibility of results, i.e. rerunning it with same seed will also generate the same value.
- Returns:
- a newly generated value
-
injectDuplicates
@API(status=MAINTAINED, since="1.3.0") default Arbitrary<T> injectDuplicates(double duplicateProbability) Create a new arbitrary of typeIterable<T>
that will inject duplicates of previously generated values with a probability ofduplicateProbability
.Shrinking behavior for duplicate values -- if duplication is required for falsification -- is poor, i.e. those duplicate values cannot be shrunk to "smaller" duplicate values.
- Parameters:
duplicateProbability
- The probability with which a previous value will be generated- Returns:
- a new arbitrary instance
-
tuple1
Create a new arbitrary of typeTuple.Tuple1<T>
that will use the underlying arbitrary to create the tuple value;- Returns:
- a new arbitrary instance
-
tuple2
Create a new arbitrary of typeTuple.Tuple2<T, T>
that will use the underlying arbitrary to create the tuple values;- Returns:
- a new arbitrary instance
-
tuple3
Create a new arbitrary of typeTuple.Tuple3<T, T, T>
that will use the underlying arbitrary to create the tuple values;- Returns:
- a new arbitrary instance
-
tuple4
Create a new arbitrary of typeTuple.Tuple4<T, T, T, T>
that will use the underlying arbitrary to create the tuple values;- Returns:
- a new arbitrary instance
-
tuple5
Create a new arbitrary of typeTuple.Tuple5<T, T, T, T, T>
that will use the underlying arbitrary to create the tuple values;- Returns:
- a new arbitrary instance
-
ignoreException
@API(status=MAINTAINED, since="1.3.1") default Arbitrary<T> ignoreException(Class<? extends Throwable> exceptionType) Create a new arbitrary of typeT
that will use the underlying arbitrary to create the tuple values but will ignore any raised exception of typeexceptionType
during generation.- Parameters:
exceptionType
- The exception type to ignore- Returns:
- a new arbitrary instance
-
ignoreExceptions
@API(status=MAINTAINED, since="1.7.2") default Arbitrary<T> ignoreExceptions(Class<? extends Throwable>... exceptionTypes) Create a new arbitrary of typeT
that will use the underlying arbitrary to create the tuple values but will ignore any raised exception inexceptionTypes
during generation.If
exceptionTypes
is empty, the original arbitrary is returned.- Parameters:
exceptionTypes
- The exception types to ignore- Returns:
- a new arbitrary instance
-
dontShrink
Create a new arbitrary of typeT
that will use the underlying arbitrary to create the tuple values but will return unshrinkable values. This might be necessary if values are being mutated during a property run and the mutated state would make a shrunk value invalid.This is a hack to get around a weakness in jqwik's shrinking mechanism
- Returns:
- a new arbitrary instance
-
edgeCases
@API(status=EXPERIMENTAL, since="1.3.9") default Arbitrary<T> edgeCases(Consumer<EdgeCases.Config<T>> configurator) Experimental interface to change generated edge cases of a specific arbitrary.- Parameters:
configurator
- A consumer that configures deviating edge cases behaviour- Returns:
- a new arbitrary instance
- See Also:
-
withoutEdgeCases
Create a new arbitrary of typeT
that will not explicitly generate any edge cases, neither directly or in embedded arbitraries. This is useful if you want to prune selected branches of edge case generation because they are to costly or generate too many cases.- Returns:
- a new arbitrary instance
-